首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7435篇
  免费   1053篇
  2023年   39篇
  2022年   19篇
  2021年   151篇
  2020年   107篇
  2019年   143篇
  2018年   157篇
  2017年   120篇
  2016年   231篇
  2015年   377篇
  2014年   432篇
  2013年   473篇
  2012年   671篇
  2011年   654篇
  2010年   436篇
  2009年   357篇
  2008年   459篇
  2007年   510篇
  2006年   511篇
  2005年   523篇
  2004年   468篇
  2003年   381篇
  2002年   415篇
  2001年   56篇
  2000年   38篇
  1999年   67篇
  1998年   69篇
  1997年   49篇
  1996年   42篇
  1995年   42篇
  1994年   40篇
  1993年   41篇
  1992年   49篇
  1991年   24篇
  1990年   27篇
  1989年   27篇
  1988年   21篇
  1987年   27篇
  1986年   26篇
  1985年   19篇
  1984年   20篇
  1983年   11篇
  1982年   19篇
  1981年   17篇
  1980年   20篇
  1979年   16篇
  1978年   13篇
  1977年   10篇
  1976年   12篇
  1975年   10篇
  1974年   10篇
排序方式: 共有8488条查询结果,搜索用时 15 毫秒
991.
Peroxide-generated tyrosyl radicals in both prostaglandin H synthase (PGHS) isozymes have been demonstrated to couple the peroxidase and cyclooxygenase activities by serving as the immediate oxidant for arachidonic acid (AA) in cyclooxygenase catalysis. Acetylation of Ser-530 of PGHS-1 by aspirin abolishes all oxygenase activity and transforms the peroxide-induced tyrosyl radical from a functional 33-35-gauss (G) wide doublet/wide singlet to a 26-G narrow singlet unable to oxidize AA. In contrast, aspirin-treated PGHS-2 (ASA-PGHS-2) no longer forms prostaglandins but retains oxygenase activity forming 11(R)- and 15(R)-hydroperoxyeicosatetraenoic acid and also retains the EPR line-shape of the native peroxide-induced 29-30-G wide singlet radical. To evaluate the functional role of the wide singlet radical in ASA-PGHS-2, we have examined the ability of this radical to oxidize AA in single-turnover EPR studies. Anaerobic addition of AA to ASA-PGHS-2 immediately after formation of the wide singlet radical generated either a 7-line EPR signal similar to the pentadienyl AA radical obtained in native PGHS-2 or a 26-28-G singlet radical. These EPR signals could be accounted for by a pentadienyl radical and a strained allyl radical, respectively. Experiments using 11d-AA, 13(R)d-AA, 15d-AA, 13,15d(2)-AA, and octadeuterated AA (d(8)-AA) confirmed that the unpaired electron in the pentadienyl radical is delocalized over C11, C13, and C15. A 6-line EPR radical was observed when 16d(2)-AA was used, indicating only one strongly interacting C16 hydrogen. These results support a functional role for peroxide-generated tyrosyl radicals in lipoxygenase catalysis by ASA-PGHS-2 and also indicate that the AA radical in ASA-PGHS-2 is more constrained than the corresponding radical in native PGHS-2.  相似文献   
992.
Protein kinase C (PKC) regulation of cystic fibrosis transmembrane regulator (CFTR) chloride function has been demonstrated in several cell lines, including Calu-3 cells that express native, wild-type CFTR. We demonstrated previously that PKC epsilon was required for cAMP-dependent CFTR function. The goal of this study was to determine whether PKC epsilon interacts directly with CFTR. Using overlay assay, immunoprecipitation, pulldown and binding assays, we show that PKC epsilon does not bind to CFTR, but does bind to a receptor for activated C kinase (RACK1), a 37-kDa scaffold protein, and that RACK1 binds to Na(+)/H(+) exchange regulatory factor (NHERF1), a binding partner of CFTR. In vitro binding assays demonstrate dose-dependent binding of PKC epsilon to RACK1 which is inhibited by an 8-amino acid peptide based on the sequence of the sixth Trp-Asp repeat in RACK1 or by an 8-amino acid sequence in the V1 region of PKC epsilon, epsilon V1-2. A 4-amino acid sequence INAL (70-73) expressed in CFTR shares 50% homology to the RACK1 inhibitory peptide, but it does not bind PKC epsilon. NHERF1 and RACK1 bind in a dose-dependent manner. Immunofluorescence and confocal microscopy of RACK1 and CFTR revealed colocalization of the proteins to the apical and lateral regions of Calu-3 cells. The results indicate the RACK1 binds PKC epsilon and NHERF1, thus serving as a scaffold protein to anchor the enzyme in proximity to CFTR.  相似文献   
993.
Substitution of critical residues in the alpha- and beta-subunit can turn the typically resistant ATP synthase from the bacterium Escherichia coli into an enzyme showing high sensitivity to the phytopathogenic inhibitor tentoxin, which usually affects only certain sensitive plant species. In contrast to recent results obtained with the thermophilic F(1) (Groth, G., Hisabori, T., Lill, H., and Bald, D. (2002) J. Biol. Chem. 277, 20117-20119), substitution of a critical serine in the beta-subunit (betaSer(59)), which is supposed to provide an important intermolecular hydrogen bond in the binding site, was not sufficient on its own for conferring tentoxin sensitivity to the E. coli F(1) complex. Superimposition of the chloroplast F(1)-tentoxin inhibitor complex on a homology model of the E. coli F(1) complex provided detailed information on the critical residues in the alpha-subunit of the binding cleft and allowed us to model the binding site according to the steric requirements of the inhibitor. Substitution of the highly conserved residue alphaLeu(64) seems to be most important for allowing access of the inhibitor to the binding site. Combining this substitution with either additional replacements in the alpha-subunit (Q49A, L95A, E96Q, I273M) or the replacement of Ser(59) in the beta-subunit enhanced the sensitivity to the inhibitor and resulted in a complete inhibition of the E. coli F(1)-ATPase by the plant-specific inhibitor tentoxin.  相似文献   
994.
In the absence of ligand, the insulin receptor is maintained on microvilli on the cell surface. A dileucine motif (LL(986-987)) is necessary but not sufficient for this anchoring, which also required the presence of additional sequence(s) downstream of position 1000. The aim of the present study was to identify this (these) additional sequence(s). First, exons 16 or 17 were fused to the extracellular and transmembrane domains of complement receptor 1 and stably expressed in Chinese hamster ovary cells. Results obtained indicate that exon 17 is sufficient for anchoring to microvilli. Second, analysis of insulin receptor mutants truncated within exon 17 demonstrated that whereas receptors truncated at position 1000 showed no preferential association with microvilli, receptors truncated at position 1012 displayed a level of association identical to that of the full-length insulin receptor. Third, mutation of a diisoleucine motif (II(1006-1007)) present within this 12-amino acid stretch abrogated the preferential association of the receptor with microvilli. These results indicate that the domain required for association of insulin receptor with microvilli is contained within the region encoded by exon 17 and that, within this sequence, two dileucine-like motifs (LL(986-987) and II(1006-1007)) play a crucial role.  相似文献   
995.
Centrioles and basal bodies fascinate by their spectacular architecture, featuring an arrangement of nine microtubule triplets into an axial symmetry, whose biogenesis relies on yet elusive mechanisms. However, the recent discovery of new tubulins, such as delta-, epsilon-, or eta-tubulin, could constitute a breakthrough for deciphering the assembly steps of this unconventional microtubule scaffold. Here, we report the functional analysis in vivo of epsilon-tubulin, based on gene silencing in Paramecium, which demonstrates that this protein, which localizes at the basal bodies, is essential for the assembly and anchorage of the centriolar microtubules.  相似文献   
996.
Sodium balance is maintained by the precise regulation of the activity of the epithelial sodium channel (ENaC) in the kidney. We have recently reported an extracellular activation of ENaC-mediated sodium transport (I(Na)) by a GPI-anchored serine protease (mouse channel-activating protein, mCAP1) that was isolated from a cortical collecting duct cell line derived from mouse kidney. In the present study, we have identified two additional membrane-bound serine proteases (mCAP2 and mCAP3) that are expressed in the same cell line. We show that each of these proteases is able to increase I(Na) 6-10-fold in the Xenopus oocyte expression system. I(Na) and the number (N) of channels expressed at the cell surface (measured by binding of a FLAG monoclonal I(125)-radioiodinated antibody) were measured in the same oocyte. Using this assay, we show that mCAP1 increases I(Na) 10-fold (P < 0.001) but N remained unchanged (P = 0.9), indicating that mCAP1 regulates ENaC activity by increasing its average open probability of the whole cell (wcP(o)). The serum- and glucocorticoid-regulated kinase (Sgk1) involved in the aldosterone-dependent signaling cascade enhances I(Na) by 2.5-fold (P < 0.001) and N by 1.6-fold (P < 0.001), indicating a dual effect on N and wcP(o). Compared with Sgk1 alone, coexpression of Sgk1 with mCAP1 leads to a ninefold increase in I(Na) (P < 0.001) and 1.3-fold in N (P < 0.02). Similar results were observed for mCAP2 and mCAP3. The synergism between CAPs and Sgk1 on I(Na) was always more than additive, indicating a true potentiation. The synergistic effect of the two activation pathways allows a large dynamic range for ENaC-mediated sodium regulation crucial for a tight control of sodium homeostasis.  相似文献   
997.
The chick chorioallantoic membrane (CAM) is a valuable model for evaluating angiogenesis and vasculogenesis. Our purpose was to characterize the formation of the CAM vasculature, in particular the capillary plexus, between days five and six after fertilization and to examine the mode of action of cytochalasin D and suramin on vascular development during this interval. The CAM increased 20-fold in size between days five and six, during which time the capillary plexus forms by both migration of mesodermal blood vessels toward the ectoderm and by the formation of new vessels from angioblasts near the ectoderm. Between days five and six, the CAM becomes thinner, and the density of the mesodermal cells decreases. To determine the mode of action of anti-angiogenic drugs on the day five to day six CAM, various concentrations of cytochalasin D or suramin were added directly to day five CAMs, and their effects were evaluated on day six. Both drugs significantly inhibited CAM growth, altered branching patterns of the major vessels, decreased area of the major vessels, and inhibited the formation of the capillary plexus by inhibiting both vasculogenesis and the migration of mesodermal blood vessels to the ectoderm. Cytochalasin D also inhibited compartmentalization of the plexus. Cytochalasin D and suramin were inhibitory at similar doses. This study provides new information on early CAM development, establishes the mode of action and dose dependency of cytochalasin D and suramin on day five to day six CAMs, and demonstrates that the day five to day six CAM provides a useful assay to examine the effect of anti-angiogenic drugs on blood vessel development, including capillary plexus formation.  相似文献   
998.
Upon exposure to Ag and inflammatory stimuli, dendritic cells (DCs) undergo a series of dynamic cellular events, referred to as DC maturation, that involve facilitated peptide Ag loading onto MHC class II molecules and their subsequent transport to the cell surface. Besides MHC molecules, human DCs prominently express molecules of the CD1 family (CD1a, -b, -c, and -d) and mediate CD1-dependent presentation of lipid and glycolipid Ags to T cells, but the impact of DC maturation upon CD1 trafficking and Ag presentation is unknown. Using monocyte-derived immature DCs and those stimulated with TNF-alpha for maturation, we observed that none of the CD1 isoforms underwent changes in intracellular trafficking that mimicked MHC class II molecules during DC maturation. In contrast to the striking increase in surface expression of MHC class II on mature DCs, the surface expression of CD1 molecules was either increased only slightly (for CD1b and CD1c) or decreased (for CD1a). In addition, unlike MHC class II, DC maturation-associated transport from lysosomes to the plasma membrane was not readily detected for CD1b despite the fact that both molecules were prominently expressed in the same MIIC lysosomal compartments before maturation. Consistent with this, DCs efficiently presented CD1b-restricted lipid Ags to specific T cells similarly in immature and mature DCs. Thus, DC maturation-independent pathways for lipid Ag presentation by CD1 may play a crucial role in host defense, even before DCs are able to induce maximum activation of peptide Ag-specific T cells.  相似文献   
999.
The role of Ab deposition and complement activation, especially the membrane attack complex (MAC), in the mediation of injury in experimental allergic encephalomyelitis (EAE) is not resolved. The course of active EAE in normal PVG rats was compared with that in PVG rats deficient in the C6 component of complement (PVG/C6(-)) that are unable to form MAC. Following immunization with myelin basic protein, PVG/C6(-) rats developed significantly milder EAE than PVG/C rats. The anti-myelin basic protein response was similar in both strains, as was deposition of C3 in spinal cord. C9 was detected in PVG/C rats but not in PVG/C6(-), consistent with their lack of C6 and inability to form MAC. In PVG/C6(-) rats, the T cell and macrophage infiltrate in the spinal cord was also significantly less than in normal PVG/C rats. There was also reduced expression of P-selectin on endothelial cells, which may have contributed to the reduced cellular infiltrate by limiting migration from the circulation. Assay of cytokine mRNA by RT-PCR in the spinal cords showed no differences in the profile of Th1 or Th2 cytokines between PVG/C and PVG/C6(-) rats. PVG/C rats also had a greater increase in peripheral blood white blood cell, neutrophil, and basophil counts than was observed in the PVG/C6(-). These findings suggest that the MAC may have a role in the pathogenesis of EAE, not only by Ig-activated MAC injury but also via induction of P-selectin on vascular endothelium to promote infiltration of T cells and macrophages into the spinal cord.  相似文献   
1000.
Shigella flexneri is a Gram-negative pathogen that invades and causes inflammatory destruction of the human colonic epithelium, thus leading to bloody diarrhea and dysentery. A type III secretion system that delivers effector proteins into target eukaryotic cells is largely responsible for cell and tissue invasion. However, the respective role of this invasive phenotype and of lipid A, the endotoxin of the Shigella LPS, in eliciting the inflammatory cascade that leads to rupture and destruction of the epithelial barrier, was unknown. We investigated whether genetic detoxification of lipid A would cause significant alteration in pathogenicity. We showed that S. flexneri has two functional msbB genes, one carried by the chromosome (msbB1) and the other by the virulence plasmid (msbB2), the products of which act in complement to produce full acyl-oxy-acylation of the myristate at the 3' position of the lipid A glucosamine disaccharide. A mutant in which both the msbB1 and msbB2 genes have been inactivated was impaired in its capacity to cause TNF-alpha production by human monocytes and to cause rupture and inflammatory destruction of the epithelial barrier in the rabbit ligated intestinal loop model of shigellosis, indicating that lipid A plays a significant role in aggravating inflammation that eventually destroys the intestinal barrier. In addition, neutralization of TNF-alpha during invasion by the wild-type strain strongly impaired its ability to cause rupture and inflammatory destruction of the epithelial lining, thus indicating that TNF-alpha is a major effector of epithelial destruction by Shigella.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号